Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 603
1.
J Am Heart Assoc ; 13(9): e034731, 2024 May 07.
Article En | MEDLINE | ID: mdl-38700011

BACKGROUND: Cardiac damage induced by ischemic stroke, such as arrhythmia, cardiac dysfunction, and even cardiac arrest, is referred to as cerebral-cardiac syndrome (CCS). Cardiac macrophages are reported to be closely associated with stroke-induced cardiac damage. However, the role of macrophage subsets in CCS is still unclear due to their heterogeneity. Sympathetic nerves play a significant role in regulating macrophages in cardiovascular disease. However, the role of macrophage subsets and sympathetic nerves in CCS is still unclear. METHODS AND RESULTS: In this study, a middle cerebral artery occlusion mouse model was used to simulate ischemic stroke. ECG and echocardiography were used to assess cardiac function. We used Cx3cr1GFPCcr2RFP mice and NLRP3-deficient mice in combination with Smart-seq2 RNA sequencing to confirm the role of macrophage subsets in CCS. We demonstrated that ischemic stroke-induced cardiac damage is characterized by severe cardiac dysfunction and robust infiltration of monocyte-derived macrophages into the heart. Subsequently, we identified that cardiac monocyte-derived macrophages displayed a proinflammatory profile. We also observed that cardiac dysfunction was rescued in ischemic stroke mice by blocking macrophage infiltration using a CCR2 antagonist and NLRP3-deficient mice. In addition, a cardiac sympathetic nerve retrograde tracer and a sympathectomy method were used to explore the relationship between sympathetic nerves and cardiac macrophages. We found that cardiac sympathetic nerves are significantly activated after ischemic stroke, which contributes to the infiltration of monocyte-derived macrophages and subsequent cardiac dysfunction. CONCLUSIONS: Our findings suggest a potential pathogenesis of CCS involving the cardiac sympathetic nerve-monocyte-derived macrophage axis.


Disease Models, Animal , Ischemic Stroke , Macrophages , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , Ischemic Stroke/physiopathology , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Male , Mice, Knockout , Mice , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/pathology , Sympathetic Nervous System/physiopathology , Myocardium/pathology , Myocardium/metabolism , Heart Diseases/etiology , Heart Diseases/physiopathology , Heart Diseases/pathology , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , CX3C Chemokine Receptor 1/deficiency
2.
Cell Death Dis ; 15(5): 314, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702325

Ovarian cancer is one of the common tumors of the female reproductive organs. It has a high mortality rate, is highly heterogeneous, and early detection and primary prevention are very complex. Autophagy is a cellular process in which cytoplasmic substrates are targeted for degradation in lysosomes through membrane structures called autophagosomes. The periodic elimination of damaged, aged, and redundant cellular molecules or organelles through the sequential translation between amino acids and proteins by two biological processes, protein synthesis, and autophagic protein degradation, helps maintain cellular homeostasis. A growing number of studies have found that autophagy plays a key regulatory role in ovarian cancer. Interestingly, microRNAs regulate gene expression at the posttranscriptional level and thus can regulate the development and progression of ovarian cancer through the regulation of autophagy in ovarian cancer. Certain miRNAs have recently emerged as important regulators of autophagy-related gene expression in cancer cells. Moreover, miRNA analysis studies have now identified a sea of aberrantly expressed miRNAs in ovarian cancer tissues that can affect autophagy in ovarian cancer cells. In addition, miRNAs in plasma and stromal cells in tumor patients can affect the expression of autophagy-related genes and can be used as biomarkers of ovarian cancer progression. This review focuses on the potential significance of miRNA-regulated autophagy in the diagnosis and treatment of ovarian cancer.


Autophagy , MicroRNAs , Ovarian Neoplasms , Humans , Autophagy/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Animals , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics
3.
Front Public Health ; 12: 1352611, 2024.
Article En | MEDLINE | ID: mdl-38686034

Previous research has already provided evidence regarding the favorable impact of green walls and outdoor views on stress reduction and anxiety alleviation. However, there has been limited exploration into the combined effects of green walls and outdoor views on older adults. In this study, a between-subjects experiment was conducted using virtual reality (VR) technology with 23 participants. Following exposure to stressors, each participant underwent four randomized sessions, each lasting 5 min, in various virtual reality (VR) environments, encompassing non-biophilic and biophilic environments (including green walls, outdoor views, and their combination). Throughout the process, we measured physiological indicators of stress responses, including heart rate, heart rate variability, skin conductance levels, and blood pressure, using biometric sensors. Psychological changes in participants, including anxiety levels, were evaluated through the State-Trait Anxiety Inventory, recovery scales, and self-reported emotional assessments. In conclusion, in comparison to non-biophilic environments, older adults consistently exhibited lower stress levels, experienced superior anxiety relief, and demonstrated improved recovery in nature connectedness environments, with a notably faster recovery rate. These findings suggest that the incorporation of nature connectedness principles into the indoor environments of public activity spaces within older adults care facilities can significantly contribute to stress reduction and anxiety alleviation among older adults. Furthermore, these effects appear to be contingent on the specific types of nature connectedness environments. These results can provide substantial evidence to support the design of indoor common activity spaces within older adults care facilities.


Anxiety , Stress, Psychological , Virtual Reality , Humans , Female , Male , Aged , Stress, Psychological/psychology , Anxiety/psychology , Heart Rate/physiology , Aged, 80 and over , Middle Aged
4.
Signal Transduct Target Ther ; 9(1): 101, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643203

Strategies to improve T cell therapy efficacy in solid tumors such as hepatocellular carcinoma (HCC) are urgently needed. The common cytokine receptor γ chain (γc) family cytokines such as IL-2, IL-7, IL-15 and IL-21 play fundamental roles in T cell development, differentiation and effector phases. This study aims to determine the combination effects of IL-21 in T cell therapy against HCC and investigate optimized strategies to utilize the effect of IL-21 signal in T cell therapy. The antitumor function of AFP-specific T cell receptor-engineered T cells (TCR-T) was augmented by exogenous IL-21 in vitro and in vivo. IL-21 enhanced proliferation capacity, promoted memory differentiation, downregulated PD-1 expression and alleviated apoptosis in TCR-T after activation. A novel engineered IL-21 receptor was established, and TCR-T armed with the novel engineered IL-21 receptors (IL-21R-TCR-T) showed upregulated phosphorylated STAT3 expression without exogenous IL-21 ligand. IL-21R-TCR-T showed better proliferation upon activation and superior antitumor function in vitro and in vivo. IL-21R-TCR-T exhibited a less differentiated, exhausted and apoptotic phenotype than conventional TCR-T upon repetitive tumor antigen stimulation. The novel IL-21 receptor in our study programs powerful TCR-T and can avoid side effects induced by IL-21 systemic utilization. The novel IL-21 receptor creates new opportunities for next-generation TCR-T against HCC.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/metabolism , Interleukin Receptor Common gamma Subunit/metabolism , Receptors, Interleukin-21/genetics , Receptors, Interleukin-21/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Liver Neoplasms/metabolism , Receptors, Antigen, T-Cell/genetics , CD8-Positive T-Lymphocytes
5.
BMC Genomics ; 25(1): 357, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600449

BACKGROUND: Broodiness significantly impacts poultry egg production, particularly notable in specific breeds such as the black-boned Silky, characterized by pronounced broodiness. An understanding of the alterations in ovarian signaling is essential for elucidating the mechanisms that influence broodiness. However, comparative research on the characteristics of long non-coding RNAs (lncRNAs) in the ovaries of broody chickens (BC) and high egg-laying chickens (GC) remains scant. In this investigation, we employed RNA sequencing to assess the ovarian transcriptomes, which include both lncRNAs and mRNAs, in eight Taihe Black-Bone Silky Fowls (TBsf), categorized into broody and high egg-laying groups. This study aims to provide a clearer understanding of the genetic underpinnings associated with broodiness and egg production. RESULTS: We have identified a total of 16,444 mRNAs and 18,756 lncRNAs, of which 349 mRNAs and 651 lncRNAs exhibited significantly different expression (DE) between the BC and GC groups. Furthermore, we have identified the cis-regulated and trans-regulated target genes of differentially abundant lncRNA transcripts and have constructed an lncRNA-mRNA trans-regulated interaction network linked to ovarian follicle development. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses have revealed that DE mRNAs and the target genes of DE lncRNAs are associated with pathways including neuroactive ligand-receptor interaction, CCR6 chemokine receptor binding, G-protein coupled receptor binding, cytokine-cytokine receptor interaction, and ECM-receptor interaction. CONCLUSION: Our research presents a comprehensive compilation of lncRNAs and mRNAs linked to ovarian development. Additionally, it establishes a predictive interaction network involving differentially abundant lncRNAs and differentially expressed genes (DEGs) within TBsf. This significantly contributes to our understanding of the intricate interactions between lncRNAs and genes governing brooding behavior.


Chickens , RNA, Long Noncoding , Female , Animals , Chickens/genetics , Chickens/metabolism , Ovary/metabolism , RNA, Long Noncoding/metabolism , Gene Expression Profiling , RNA, Messenger/metabolism , Gene Regulatory Networks
6.
Front Pharmacol ; 15: 1330376, 2024.
Article En | MEDLINE | ID: mdl-38601472

Aristolochic acid (AA)-induced acute kidney injury (AKI) presents with progressive decline in renal function and rapid progression to end-stage renal disease. Among the multiple mechanisms identified in AKI, ferroptosis has been shown to be involved in various forms of AKI. But few studies have elucidated the role of ferroptosis in AA-induced AKI. In this study, we investigated the role of ferroptosis in AA-induced acute renal tubular injury in vivo and in vitro. Mice with acute aristolochic acid nephropathy showed increased malondialdehyde levels, aggravated lipid peroxidation, decreased superoxide dismutase activity, and glutathione depletion. The expression of glutathione peroxidase 4 was decreased and the expression of acyl-CoA synthetase long-chain family member 4 was increased. Inhibition of ferroptosis by ferrostatin-1 significantly improved the renal function, reduced histopathological lesions, partially alleviated lipid peroxidation, and restored the antioxidant capacity. In vitro studies also revealed that AA significantly reduced cell viability, induced reactive oxygen species production, increased intracellular iron level and decreased ferroptosis-related protein expression. Inhibition of ferroptosis significantly increased cell viability and attenuated AA-induced renal tubular epithelial cell injury. It is suggested that ferroptosis plays an important role in AA-induced acute tubular injury. And inhibition of ferroptosis may exert renoprotective effects possibly by preventing lipid peroxidation, restoring the antioxidant activity or regulating iron metabolism.

7.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1397-1405, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621988

This study employed evidence mapping to systematically sort out the clinical studies about the treatment of premature ventricular contractions with Chinese patent medicines and to reveal the distribution of evidence in this field. The articles about the treatment of premature ventricular contractions with Chinese patent medicines were searched against PubMed, Cochrane Library, Web of Science, CNKI, Wanfang, and VIP with the time interval from January 2016 to December 2022. Evidence was analyzed and presented by charts and graphs combined with text. According to the inclusion and exclusion criteria, 164 papers were included, including 147 interventional studies, 4 observational studies, and 13 systematic reviews. A total of 27 Chinese patent medicines were involved, in which Shensong Yangxin Capsules and Wenxin Granules had high frequency. There were off-label uses in clinical practice. In recent years, the number of articles published in this field showed a decreasing trend. Eight types of outcome indicators were used in interventional studies. Ambulatory electrocardiography, clinical response rate, safety, and echocardiography had high frequency, while the rate of ß-blocker decompensation, major cardiovascular events, and pharmaceutical economic indicators were rarely reported. The evaluation was one-sided. The low quality of the included articles reduced the reliability of the findings. In the future, the clinical use of medicines should be standardized, and the quality of clinical studies should be improved. Comprehensive clinical evaluation should be carried out to provide a sound scientific basis for the treatment of premature ventricular contractions with Chinese patent medicines.


Drugs, Chinese Herbal , Medicine, East Asian Traditional , Ventricular Premature Complexes , Humans , Ventricular Premature Complexes/drug therapy , Nonprescription Drugs/therapeutic use , Reproducibility of Results , Drugs, Chinese Herbal/therapeutic use , Capsules
8.
ACS Nano ; 18(15): 10542-10556, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38561324

Immunotherapy has emerged as a potential approach for breast cancer treatment. However, the rigid stromal microenvironment and low immunogenicity of breast tumors strongly reduce sensitivity to immunotherapy. To sensitize patients to breast cancer immunotherapy, hyaluronic acid-modified zinc peroxide-iron nanocomposites (Fe-ZnO2@HA, abbreviated FZOH) were synthesized to remodel the stromal microenvironment and increase tumor immunogenicity. The constructed FZOH spontaneously generated highly oxidative hydroxyl radicals (·OH) that degrade hyaluronic acid (HA) in the tumor extracellular matrix (ECM), thereby reshaping the tumor stromal microenvironment and enhancing blood perfusion, drug penetration, and immune cell infiltration. Furthermore, FZOH not only triggers pyroptosis through the activation of the caspase-1/GSDMD-dependent pathway but also induces ferroptosis through various mechanisms, including increasing the levels of Fe2+ in the intracellular iron pool, downregulating the expression of FPN1 to inhibit iron efflux, and activating the p53 signaling pathway to cause the failure of the SLC7A11-GSH-GPX4 signaling axis. Upon treatment with FZOH, 4T1 cancer cells undergo both ferroptosis and pyroptosis, exhibiting a strong immunogenic response. The remodeling of the tumor stromal microenvironment and the immunogenic response of the cells induced by FZOH collectively compensate for the limitations of cancer immunotherapy and significantly enhance the antitumor immune response to the immune checkpoint inhibitor αPD-1. This study proposes a perspective for enhancing immune therapy for breast cancer.


Breast Neoplasms , Neoplasms , Humans , Female , Breast Neoplasms/therapy , Hyaluronic Acid , Immunotherapy , Peroxides , Zinc , Tumor Microenvironment , Cell Line, Tumor
9.
Pestic Biochem Physiol ; 200: 105807, 2024 Mar.
Article En | MEDLINE | ID: mdl-38582579

Recently, nanotechnology is among the most promising technologies used in all areas of research. The production of metal nanoparticles using plant parts has received significant attention for its environmental friendliness and effectiveness. Therefore, we investigated the possible applications of biological synthesized nickel oxide nanoparticles (NiONPs). In this study, NiONPs were synthesized through biological method using an aqueous extract of saffron stigmas (Crocus sativus L). The structure, morphology, purity, and physicochemical properties of the obtained NPs were confirmed through Scanning/Transmission Electron Microscopy attached with Energy Dispersive Spectrum, X-ray Diffraction, and Fourier transform infrared. The spherically shaped NiONPs were found by Debye Scherer's formula to have a mean dimension of 41.19 nm. The application of NiONPs in vitro at 50, 100, and 200 µg/mL, respectively, produced a clear region of 2.0, 2.2, and 2.5 cm. Treatment of Xoo cell with NiONPs reduced the growth and biofilm formation, respectively, by 88.68% and 83.69% at 200 µg/mL. Adding 200 µg/mL NiONPs into Xoo cells produced a significant amount of ROS in comparison with the control. Bacterial apoptosis increased dramatically from 1.05% (control) to 99.80% (200 µg/mL NiONPs). When compared to the control, rice plants treated with 200 µg/mL NiONPs significantly improved growth characteristics and biomass. Interestingly, the proportion of diseased leaf area in infected plants with Xoo treated with NiONPs reduced to 22% from 74% in diseased plants. Taken together, NiONPs demonstrates its effectiveness as a promising tool as a nano-bactericide in managing bacterial infection caused by Xoo.


Metal Nanoparticles , Nickel , Oryza , Xanthomonas , Oryza/microbiology , Plant Diseases/prevention & control , Plant Diseases/microbiology
10.
Article En | MEDLINE | ID: mdl-38578849

Advanced manufacturing creates increasingly complex objects with material compositions that are often difficult to characterize by a single modality. Our collaborating domain scientists are going beyond traditional methods by employing both X-ray and neutron computed tomography to obtain complementary representations expected to better resolve material boundaries. However, the use of two modalities creates its own challenges for visualization, requiring either complex adjustments of bimodal transfer functions or the need for multiple views. Together with experts in nondestructive evaluation, we designed a novel interactive bimodal visualization approach to create a combined view of the co-registered X-ray and neutron acquisitions of industrial objects. Using an automatic topological segmentation of the bivariate histogram of X-ray and neutron values as a starting point, the system provides a simple yet effective interface to easily create, explore, and adjust a bimodal visualization. We propose a widget with simple brushing interactions that enables the user to quickly correct the segmented histogram results. Our semiautomated system enables domain experts to intuitively explore large bimodal datasets without the need for either advanced segmentation algorithms or knowledge of visualization techniques. We demonstrate our approach using synthetic examples, industrial phantom objects created to stress bimodal scanning techniques, and real-world objects, and we discuss expert feedback.

11.
Nat Commun ; 15(1): 2264, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38480688

NME3 is a member of the nucleoside diphosphate kinase (NDPK) family localized on the mitochondrial outer membrane (MOM). Here, we report a role of NME3 in hypoxia-induced mitophagy dependent on its active site phosphohistidine but not the NDPK function. Mice carrying a knock-in mutation in the Nme3 gene disrupting NME3 active site histidine phosphorylation are vulnerable to ischemia/reperfusion-induced infarction and develop abnormalities in cerebellar function. Our mechanistic analysis reveals that hypoxia-induced phosphatidic acid (PA) on mitochondria is essential for mitophagy and the interaction of DRP1 with NME3. The PA binding function of MOM-localized NME3 is required for hypoxia-induced mitophagy. Further investigation demonstrates that the interaction with active NME3 prevents DRP1 susceptibility to MUL1-mediated ubiquitination, thereby allowing a sufficient amount of active DRP1 to mediate mitophagy. Furthermore, MUL1 overexpression suppresses hypoxia-induced mitophagy, which is reversed by co-expression of ubiquitin-resistant DRP1 mutant or histidine phosphorylatable NME3. Thus, the site-specific interaction with active NME3 provides DRP1 a microenvironment for stabilization to proceed the segregation process in mitophagy.


Dynamins , Mitophagy , Animals , Mice , Dynamins/genetics , Dynamins/metabolism , Histidine/metabolism , Hypoxia , Mitophagy/genetics , Ubiquitination
12.
Discov Oncol ; 15(1): 90, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38551775

BACKGROUND: Cervical cancer (CC) is a danger to women's health, especially in many developing countries. Metabolomics can make the connection between genotypes and phenotypes. It provides a wide spectrum profile of biological processes under pathological or physiological conditions. METHOD: In this study, we conducted plasma metabolomics of healthy volunteers and CC patients and integratively analyzed them with public CC tissue transcriptomics from Gene Expression Omnibus (GEO). RESULT: Here, we screened out a panel of 5 metabolites to precisely distinguish CC patients from healthy volunteers. Furthermore, we utilized multi-omics approaches to explore patients with stage I-IIA1 and IIA2-IV4 CC and comprehensively analyzed the dysregulation of genes and metabolites in CC progression. We identified that plasma levels of trimethylamine N-oxide (TMAO) were associated with tumor size and regarded as a risk factor for CC. Moreover, we demonstrated that TMAO could promote HeLa cell proliferation in vitro. In this study, we delineated metabolic profiling in healthy volunteers and CC patients and revealed that TMAO was a potential biomarker to discriminate between I-IIA1 and IIA2-IV patients to indicate CC deterioration. CONCLUSION: Our study identified a diagnostic model consisting of five metabolites in plasma that can effectively distinguish CC from healthy volunteers. Furthermore, we proposed that TMAO was associated with CC progression and might serve as a potential non-invasive biomarker to predict CC substage. IMPACT: These findings provided evidence of the important role of metabolic molecules in the progression of cervical cancer disease, as well as their ability as potential biomarkers.

13.
J Gynecol Oncol ; 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38522950

OBJECTIVE: The study aimed to review the oncological characteristics and treatment of pregnancy-associated cancers and analyze the obstetric and neonatal outcomes to provide evidence-based recommendations for reproductive function preservation, oncological treatment, and obstetric management. METHODS: We conducted an observational retrospective cohort study among pregnant patients with cancer in 7 Chinese tertiary A hospitals from 2003 to 2021. We conducted multiple logistic regression to determine the influence of various factors on preterm birth and small-for-gestational-age infants, log-binomial regression to analyze temporal changes, and χ² tests to explore the effects of cancer type/treatment. RESULTS: Of 204 women, 17% terminated their pregnancies; 59% received pre-delivery treatment. Every 6 years, the rates of pregnancy termination (relative risk [RR]=0.48; 95% confidence interval [CI]=0.35-0.67) and iatrogenic preterm births (RR=0.73; 95% CI=0.54-0.98) reduced, and that of pre-delivery treatment increased, mainly due to increased rates of surgery (RR=1.87; 95% CI=1.31-2.67). Maternal systemic diseases were related to small-for-gestational-age infants (odds ratio [OR]=12.02; 95% CI=1.82-79.43). Chemotherapy with taxanes plus platinum-based agents was related to adverse obstetric outcomes (OR=1.87; 95% CI=1.42-2.46; p<0.05). Thyroid (OR=0.36; 95% CI=0.22-0.57) and ovarian cancer (OR=0.70; 95% CI=0.50-0.98) were associated with fewer cesarean sections. Thyroid cancer was associated with fetal growth restriction (OR=5.21; 95% CI=1.21-22.55). CONCLUSION: Rates of pregnancy termination in cancer declined. Taxane plus platinum-based chemotherapy was associated with adverse obstetric outcomes. Cancer type influenced outcomes. TRIAL REGISTRATION: Chinese Clinical Trial Register Identifier: ChiCTR2100044292.

14.
Front Physiol ; 15: 1358682, 2024.
Article En | MEDLINE | ID: mdl-38426211

Introduction: Long non-coding RNA (lncRNA) refers to a category of non-coding RNA molecules exceeding 200 nucleotides in length, which exerts a regulatory role in the context of ovarian development. There is a paucity of research examining the involvement of lncRNA in the regulation of ovary development in Taihe Black-Bone Chickens. In order to further investigate the egg laying regulation mechanisms of Taihe Black-Bone Chickens at different periods, transcriptome analysis was conducted on the ovarian tissues at different laying periods. Methods: This study randomly selected ovarian tissues from 12 chickens for RNA-seq. Four chickens were selected for each period, including the early laying period (102 days, Pre), the peak laying period (203 days, Peak), and the late laying period (394 days, Late). Based on our previous study of mRNA expression profiles in the same ovarian tissue, we identified three differentially expressed lncRNAs (DE lncRNAs) at different periods and searched for their cis- and trans-target genes to draw an lncRNA-mRNA network. Results and discussion: In three groups of ovarian tissues, we identified 136 DE lncRNAs, with 8 showing specific expression during the early laying period, 10 showing specific expression during the peak laying period, and 4 showing specific expression during the late laying period. The lncRNA-mRNA network revealed 16 pairs of lncRNA-target genes associated with 7 DE lncRNAs, and these 14 target genes were involved in the regulation of reproductive traits. Furthermore, these reproductive-related target genes were primarily associated with signaling pathways related to follicle and ovary development in Taihe Black-Bone Chickens, including cytokine-cytokine receptor interaction, TGF-beta signaling pathway, tyrosine metabolism, ECM-receptor interaction, focal adhesion, neuroactive ligand-receptor interaction, and cell adhesion molecules (CAMs). This study offers valuable insights for a comprehensive understanding of the influence of lncRNAs on poultry reproductive traits.

15.
Opt Lett ; 49(5): 1213-1216, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38426976

In this Letter, the problems of achieving inter-CubeSat communication through radio frequency (RF) and lasers are explained, and the feasibility of using visible light communication to replace RF and lasers is investigated. On this basis, a novel, to the best of our knowledge, heterogeneous optical network with high flexibility is proposed, in which CubeSats are divided into clusters in pairs. CubeSats in each cluster utilize different optical modulation methods to achieve a compromise between optical power efficiency and spectral efficiency, as well as avoid inter-CubeSat interference. Furthermore, under the maximum power and minimum capacity constraints, a closed-form optical power allocation solution minimizing an overall bit error rate (BER) is investigated. Simulation results show that our proposed scheme is more preferred in practical systems and can achieve 3.8 dB gains compared to the conventional power allocation scheme at a BER of 10-4.

16.
Carcinogenesis ; 2024 Mar 09.
Article En | MEDLINE | ID: mdl-38459912

Long non-coding RNAs (lncRNAs) have been established as pivotal players in various cellular processes, encompassing the regulation of transcription, translation, post-translational modulation of proteins, thereby influencing cellular functions. Notably, lncRNAs exert a regulatory influence on diverse biological processes, particularly in the context of tumor development. Tumor-associated macrophages (TAMs) exhibit the M2 phenotype, exerting significant impact on crucial processes such as tumor initiation, angiogenesis, metastasis, and immune evasion. Elevated infiltration of TAMs into the tumor microenvironment (TME) is closely associated with a poor prognosis in various cancers. LncRNAs within TAMs play a direct role in regulating cellular processes. Functioning as integral components of tumor-derived exosomes, lncRNAs prompt the M2-like polarization of macrophages. Concurrently, reports indicate that lncRNAs in tumor cells contribute to the expression and release of molecules that modulate TAMs within the TME. These actions of lncRNAs induce the recruitment, infiltration, and M2 polarization of TAMs, thereby providing critical support for tumor development. In this review, we survey recent studies elucidating the impact of lncRNAs on macrophage recruitment, polarization, and function across different types of cancers.

17.
Phys Chem Chem Phys ; 26(14): 10660-10672, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38511550

The cap-dependent mRNA translation is dysregulated in many kinds of cancers. The interaction between eIF4E and eIF4G through a canonical eIF4E-binding motif (CEBM) determines the efficacy of the cap-dependent mRNA translation. eIF4E-binding proteins (4E-BPs) share the CEBM and compete with eIF4G for the same binding surface of eIF4E and then inhibit the mRNA translation. 4E-BPs function as tumor repressors in nature. Hyperphosphorylation of 4E-BPs regulates the structure folding and causes the dissociation of 4E-BPs from eIF4E. However, until now, there has been no structure of the full-length 4E-BPs in complex with eIF4E. The regulation mechanism of phosphorylation is still unclear. In this work, we first investigate the interactions of human eIF4E with the CEBM and an auxiliary eIF4E-binding motif (AEBM) in eIF4G and 4E-BPs. The results unravel that the structure and interactions of the CEBM are highly conserved between eIF4G and 4E-BPs. However, the extended CEBM (ECEBM) in 4E-BPs forms a longer helix than that in eIF4G. The residue R62 in the ECEBM of 4E-BP2 forms salt bridges with E32 and E70 of eIF4E. The residue R63 of 4E-BP2 forms two special hydrogen bonds with N77 of eIF4E. Both of these interactions are missing in eIF4G. The AEBM of 4E-BPs folds into a ß-sheet conformation, which protects V81 inside a hydrophobic core in 4E-BP2. In eIF4G, the AEBM exists in a random coil state. The hydrophilic residues S637 and D638 of eIF4G open the hydrophobic core for solvents. The results show that the ECEBM and AEBM may be responsible for the competing advantage of 4E-BP2. Finally, based on our previous work (J. Zeng, F. Jiang and Y. D. Wu, J. Chem. Theory Comput., 2017, 13, 320), the human eIF4E:4E-BP2 complex (eIF4E:BP2P18-I88) including all reported phosphorylation sites is predicted. The eIF4E:BP2P18-I88 complex is different from the existing experimental eIF4E:eIF4G complex and provides an important structure for further studying the regulation mechanism of phosphorylation in 4E-BPs.


Eukaryotic Initiation Factor-4E , Eukaryotic Initiation Factor-4G , Humans , Carrier Proteins/metabolism , Eukaryotic Initiation Factor-4E/chemistry , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Eukaryotic Initiation Factor-4G/chemistry , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism , Protein Binding , Protein Biosynthesis
18.
Arch Virol ; 169(4): 84, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38532129

The ongoing COVID-19 pandemic caused by SARS-CoV-2 has prompted global concern due to its profound impact on public health and the economy. Effective treatment of COVID-19 patients in the acute phase or of those with long COVID is a major challenge. Using data-independent acquisition (DIA) technology, we performed proteomic profiling on plasma samples from 22 COVID-19 patients and six healthy controls at Dazhou Central Hospital. Random forest and least absolute shrinkage and selection operator algorithms were used for analysis at various COVID-19 treatment stages. We identified 79 proteins that were differentially expressed between COVID-19 patients and healthy controls, mainly involving pathways associated with cell processes and binding. Across different treatment stages of COVID-19, five proteins-PI16, GPLD1, IGFBP3, KRT19, and VCAM1-were identified as potential molecular markers for dynamic disease monitoring. Furthermore, the proteins BTD, APOM, IGKV2-28, VWF, C4BPA, and C7 were identified as candidate biomarkers for distinguishing between SARS-CoV-2 positivity and negativity. Analysis of protein change profiles between the follow-up and healthy control groups highlighted cardiovascular changes as a concern for patients recovering from COVID-19. Our study revealed the infection profiles of SARS-CoV-2 at the protein expression level comparing different phases of COVID-19. DIA mass spectrometry analysis of plasma samples from COVID-19 patients undergoing treatment identified key proteins involved in signaling pathways that might be used as markers of the recovery phase. These findings provide insight for the development of therapy options and suggest potential blood biomarkers for COVID-19.


COVID-19 , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Proteomics/methods , Pandemics , COVID-19 Drug Treatment , Biomarkers
19.
Dev Cell ; 59(9): 1175-1191.e7, 2024 May 06.
Article En | MEDLINE | ID: mdl-38521055

In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a-/- mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach.


Amino Acid Transport System y+ , Ferroptosis , Metaplasia , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Reactive Oxygen Species , Regeneration , Stomach , Animals , Reactive Oxygen Species/metabolism , Mice , Ferroptosis/physiology , Stomach/pathology , Regeneration/physiology , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Metaplasia/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Gastric Mucosa/metabolism , Mice, Inbred C57BL , Chief Cells, Gastric/metabolism , Acinar Cells/metabolism , Mice, Knockout , Phospholipid Hydroperoxide Glutathione Peroxidase , Intercellular Signaling Peptides and Proteins
20.
Neural Netw ; 173: 106158, 2024 May.
Article En | MEDLINE | ID: mdl-38340470

Keypoints extraction from 3D objects is a fundamental task in point cloud processing. The ideal keypoints should be an ordered and well-aligned set of points that effectively reflect the shape and structure of the object. To this end, this paper proposes an unsupervised 3D point cloud keypoints generation network with the consideration of the probability distribution of keypoints and spatial distribution among keypoints. The network downsamples and groups the 3D point cloud, obtaining local features of the point cloud. The local features are leveraged to explicitly learn the mixture probability distribution of keypoint position. A composite loss function that comprehensively considers shape similarity, point importance, and geometric constraint is proposed to guide the network in generating keypoints with semantic consistency and regular spatial distribution. The experimental results and quantitative comparisons on the ShapeNet and KeypointNet datasets demonstrate that the proposed method achieves ordered, well-aligned, and robust keypoints generation for 3D point clouds. The source code of the proposed method is available at https://github.com/djzgroup/Keypoints.


Cloud Computing , Learning , Probability , Semantics , Software
...